salad.utils packageΒΆ
SubmodulesΒΆ
salad.utils.augment moduleΒΆ
- 
class salad.utils.augment.AffineTransformer(*args, **kwargs)ΒΆ
- Bases: - torch.nn.modules.module.Module- 
affine(y, theta)ΒΆ
 - 
invert_affine(M)ΒΆ
- Invert matrix for an affine transformation. Supports batch inputs - M : Transformation matrices of shape (β¦ x 6) - Output: Inverse transformation matrices of shape (β¦ x 6) 
 - 
stn(x, theta)ΒΆ
 
- 
- 
class salad.utils.augment.RandomAffines(flip_x=0.5, flip_y=0.5, shear_x=(0, 0.3), shear_y=(0, 0.3), scale=(0.8, 1.4), rotate=(-1.5707963267948966, 3.141592653589793), dx=(-0.2, 0.2), dy=(-0.2, 0.2))ΒΆ
- Bases: - object- 
compose(size)ΒΆ
 - 
identify(size)ΒΆ
 - 
matmul(A, B)ΒΆ
 - 
reflect(size, p=0.5)ΒΆ
 - 
rotated(size, p=0.5)ΒΆ
 - 
scaled(size, p=0.5)ΒΆ
 - 
shear(size, p=0.5)ΒΆ
 - 
shift(size, p=0.5)ΒΆ
 
- 
salad.utils.base moduleΒΆ
- 
salad.utils.base.load_or_create(init_func, path)ΒΆ
- 
salad.utils.base.panelize(img)ΒΆ
salad.utils.config moduleΒΆ
Experiment Configurations for salad
This file contains classes to easily configure experiments for different solvers
available in salad.
- 
class salad.utils.config.BaseConfig(description, log='./log')ΒΆ
- Bases: - argparse.ArgumentParser- Basic configuration with arguments for most deep learning experiments - 
print_config()ΒΆ
 
- 
- 
class salad.utils.config.DomainAdaptConfig(description, log='./log')ΒΆ
- Bases: - salad.utils.config.BaseConfig- Base Configuration for Unsupervised Domain Adaptation Experiments