salad.utils packageΒΆ
SubmodulesΒΆ
salad.utils.augment moduleΒΆ
-
class
salad.utils.augment.
AffineTransformer
(*args, **kwargs)ΒΆ Bases:
torch.nn.modules.module.Module
-
affine
(y, theta)ΒΆ
-
invert_affine
(M)ΒΆ Invert matrix for an affine transformation. Supports batch inputs
M : Transformation matrices of shape (β¦ x 6)
Output: Inverse transformation matrices of shape (β¦ x 6)
-
stn
(x, theta)ΒΆ
-
-
class
salad.utils.augment.
RandomAffines
(flip_x=0.5, flip_y=0.5, shear_x=(0, 0.3), shear_y=(0, 0.3), scale=(0.8, 1.4), rotate=(-1.5707963267948966, 3.141592653589793), dx=(-0.2, 0.2), dy=(-0.2, 0.2))ΒΆ Bases:
object
-
compose
(size)ΒΆ
-
identify
(size)ΒΆ
-
matmul
(A, B)ΒΆ
-
reflect
(size, p=0.5)ΒΆ
-
rotated
(size, p=0.5)ΒΆ
-
scaled
(size, p=0.5)ΒΆ
-
shear
(size, p=0.5)ΒΆ
-
shift
(size, p=0.5)ΒΆ
-
salad.utils.base moduleΒΆ
-
salad.utils.base.
load_or_create
(init_func, path)ΒΆ
-
salad.utils.base.
panelize
(img)ΒΆ
salad.utils.config moduleΒΆ
Experiment Configurations for salad
This file contains classes to easily configure experiments for different solvers
available in salad
.
-
class
salad.utils.config.
BaseConfig
(description, log='./log')ΒΆ Bases:
argparse.ArgumentParser
Basic configuration with arguments for most deep learning experiments
-
print_config
()ΒΆ
-
-
class
salad.utils.config.
DomainAdaptConfig
(description, log='./log')ΒΆ Bases:
salad.utils.config.BaseConfig
Base Configuration for Unsupervised Domain Adaptation Experiments