salad.datasets.digits packageΒΆ
Digits datasets used in domain adaptation
SubmodulesΒΆ
salad.datasets.digits.base moduleΒΆ
salad.datasets.digits.mnist moduleΒΆ
salad.datasets.digits.openset moduleΒΆ
-
class
salad.datasets.digits.openset.OpenSetDataset(dataset, known, unknown, labels=None)ΒΆ Bases:
objectDataset wrapper for openset classification
Works with any classification datasets that outputs a tuple (x, y) when calling the getitem method. Given two sets of label for known and unknown classes, maps unknown class labels to zero.
-
salad.datasets.digits.openset.get_data(train=True, batch_size=128)ΒΆ
salad.datasets.digits.synth moduleΒΆ
-
class
salad.datasets.digits.synth.Synth(root, split='train', transform=None, label_transform=None, download=True)ΒΆ Bases:
salad.datasets.digits.base._BaseDatasetSynthetic images dataset
-
extract_images_labels(filename)ΒΆ
-
image_shape= [16, 16, 1]ΒΆ
-
num_labels= 10ΒΆ
-
test_file= 'synth_test_32x32.mat?raw=true'ΒΆ
-
training_file= 'synth_train_32x32.mat?raw=true'ΒΆ
-
urls= {'https://github.com/domainadaptation/datasets/blob/master/synth/synth_test_32x32.mat?raw=true', 'https://github.com/domainadaptation/datasets/blob/master/synth/synth_train_32x32.mat?raw=true'}ΒΆ
-
-
class
salad.datasets.digits.synth.SynthSmall(root, split='train', transform=None, label_transform=None, download=True)ΒΆ Bases:
salad.datasets.digits.base._BaseDatasetSynthetic images dataset
-
extract_images_labels(filename)ΒΆ
-
image_shape= [16, 16, 1]ΒΆ
-
num_labels= 10ΒΆ
-
test_file= 'synth_test_32x32.mat_small?raw=true'ΒΆ
-
training_file= 'synth_train_32x32_small.mat?raw=true'ΒΆ
-
urls= {'https://github.com/domainadaptation/datasets/blob/master/synth/synth_test_32x32_small.mat?raw=true', 'https://github.com/domainadaptation/datasets/blob/master/synth/synth_train_32x32_small.mat?raw=true'}ΒΆ
-
salad.datasets.digits.usps moduleΒΆ
-
class
salad.datasets.digits.usps.USPS(root, split='train', transform=None, label_transform=None, download=True)ΒΆ Bases:
salad.datasets.digits.base._BaseDataset[USPS](http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html) Dataset.
Parameters: - root (string) β Root directory of dataset where
processed/training.ptandprocessed/test.ptexist. - train (bool, optional) β If True, creates dataset from
training.pt, otherwise fromtest.pt. - download (bool, optional) β If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
- transform (callable, optional) β A function/transform that takes in an PIL image
and returns a transformed version. E.g,
transforms.RandomCrop - target_transform (callable, optional) β A function/transform that takes in the target and transforms it.
Download USPS dataset from [1] or use the expliclict links [2] for training and [3] for testing. Code for loading the dataset partly adapted from [4] (Apache License 2.0).
References
[1] http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html [2] Training Dataset http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.train.gz [3] Test Dataset http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.test.gz [4] https://github.com/haeusser/learning_by_association/blob/master/semisup/tools/usps.py -
extract_images_labels(filename)ΒΆ
-
image_shape= [16, 16, 1]ΒΆ
-
num_labels= 10ΒΆ
-
test_file= 'zip.train.gz'ΒΆ
-
training_file= 'zip.train.gz'ΒΆ
-
urls= ['http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.train.gz', 'http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.test.gz']ΒΆ
- root (string) β Root directory of dataset where